Linear transformations

If A is an $m \times n$ matrix, we defined the matrix transformation induced by $A \quad T_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ by

$$
T_{A}(\vec{x})=A \vec{x}
$$

Today we will give a different definition of transformations and then show that the two definitions are actually equivalent.

Definition A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if it satisfies the following properties for all vectors \vec{x} and \vec{y} in \mathbb{R}^{n} and all scalars a :
(1.) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
(2.) $T(a \stackrel{\rightharpoonup}{x})=a T(\vec{x})$.

Note: This definition implies that

$$
T(0)=T(0 \vec{x})=0 T(\vec{x})=0
$$

so $T(0)=0$ for all linear transformations.
We can easily check that transformations induced by matrices satisfy these properties:

If A is a matrix, then

$$
\begin{aligned}
& T_{A}(\vec{x}+\vec{y})=A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=T_{A}(\vec{x})+T_{A}(\vec{y}) . \\
& T_{A}(a \vec{x})=A(a \vec{x})=a A \vec{x}=a T_{A}(\vec{x}) .
\end{aligned}
$$

Ex: Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{3}
\end{array}\right] .
$$

Is this a linear transformation?
(1.)

$$
\begin{aligned}
& \text { T } T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=T\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right) \\
\left(x_{3}+y_{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{3}
\end{array}\right]=T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+T\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] . J
\end{aligned}
$$

(2.)

$$
\begin{aligned}
& T\left(a\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=T\left[\begin{array}{ll}
a & x_{1} \\
a & x_{2} \\
a & x_{3}
\end{array}\right]=\left[\begin{array}{c}
a x_{1}+a x_{2} \\
a \\
a x_{3}
\end{array}\right]=a\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{3}
\end{array}\right] \\
& =a T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot V
\end{aligned}
$$

So, yes. It's a linear transformation.
We can also see that T satisfies our original definition of transformation by finding a matrix $\underset{\hat{\uparrow}}{A}$ such that $T(\vec{x})=A \vec{x}$. 1
2×3

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{3}
\end{array}\right]
$$

so $T(\vec{x})=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \vec{x}$.

Theorem: A function $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear transformation if and only if there is a matrix A such that $T=T_{A}$. (i.e. $T(\vec{x})=A \vec{x}$ for all \vec{x} in \mathbb{R}^{n}.)

In this case the matrix A is unique and is given by

$$
A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) \ldots T\left(\vec{e}_{n}\right)\right]
$$

i.e. its th column is $T\left(\vec{e}_{i}\right)$, where $\vec{e}_{i}=\frac{i t h}{\text { column of }}$ identity matrix identity matrix $\left(\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right.$ is called the standard bass is of \mathbb{R}^{n})

Ex: Going back to example above,

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{3}
\end{array}\right] \text {, we can use the above }
$$

formula to construct the matrix.
so the associated matrix is $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Ex: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation given by counterclockwise rotation by 90°.

We already showed this is a linear transformation, but now
we have an easy way to compute the corresponding matrix:

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

$[\begin{array}{l}0 \\ i \\ i\end{array} \overbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}^{\overbrace{n}}$

So $T(\vec{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \vec{x}$.
Ex: is $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{2} \\
1
\end{array}\right]
$$

a linear transformation?
No $T\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$
We can also see this since

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)=T\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(x_{1}+y_{1}\right)-\left(x_{2}-y_{2}\right) \\
1 \\
1
\end{array}\right] \\
& T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+T\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) \\
2
\end{array}\right]
\end{aligned}
$$

Linear combinations

One important property of linear transformations is that they preserve linear combinations.

That is, if $\vec{x}_{1}, \ldots, \vec{x}_{k}$ are vectors, a_{1}, \ldots, a_{k} scalars, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a linear transformation, then

$$
\begin{aligned}
& T\left(a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}+\ldots+a_{k} \stackrel{\rightharpoonup}{x}_{k}\right) \\
= & T\left(a_{1} \vec{x}_{1}\right)+T\left(a_{2} \vec{x}_{2}\right)+\cdots+T\left(a_{k} \vec{x}_{k}\right) \\
= & a_{1} T\left(\vec{x}_{1}\right)+a_{2} T\left(\vec{x}_{2}\right)+\cdots+a_{k} T\left(\vec{x}_{k}\right) .
\end{aligned}
$$

This means that if we know $T\left(\vec{x}_{1}\right), \ldots, T\left(\vec{x}_{k}\right)$, then we can find $T(\vec{y})$ for any linear combination \vec{y} of $\vec{x}_{1}, \ldots, \vec{x}_{k}$.

Ex: Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation and

$$
T\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right], \quad T\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

What is $T\left[\begin{array}{l}3 \\ 3\end{array}\right]$?
We first want to write $\left[\begin{array}{l}3 \\ 3\end{array}\right]$ as a linear combination of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$:

$$
\begin{aligned}
& a\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \Rightarrow \begin{array}{r}
a-b=3 \\
-a+2 b=3
\end{array} \rightarrow\left[\begin{array}{cc|c}
1 & -1 & 3 \\
-1 & 2 & 3
\end{array}\right] \\
& \xrightarrow{(2+(1)}\left[\begin{array}{cc|c}
1 & -1 & 3 \\
0 & 1 & 6
\end{array}\right] \xrightarrow{(1)+(2)}\left[\begin{array}{ll|l}
1 & 0 & 9 \\
0 & 1 & 6
\end{array}\right] \Rightarrow a=9, b=6
\end{aligned}
$$

so $\left[\begin{array}{l}3 \\ 3\end{array}\right]=9\left[\begin{array}{c}1 \\ -1\end{array}\right]+6\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, so we get

$$
T\left[\begin{array}{l}
3 \\
3
\end{array}\right]=T\left(9\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+6\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right)=9 T\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+6 T\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

$$
=9\left[\begin{array}{l}
5 \\
1
\end{array}\right]+6\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
45 \\
9
\end{array}\right]+\left[\begin{array}{l}
0 \\
6
\end{array}\right]=\left[\begin{array}{l}
45 \\
15
\end{array}\right] .
$$

Geometry of linear transformations

If \vec{x} and \vec{y} are vectors in \mathbb{R}^{2}, we can describe their sum geometrically.

Ex: $\quad \vec{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad \vec{y}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \quad \vec{x}+\vec{y}=\left[\begin{array}{l}y \\ 3\end{array}\right]$

Notice that $\vec{x}+\vec{y}$ is the diagonal of the parallelogram formed by taking \vec{x} and \vec{y} as two of the sides.
Equivalently, $\vec{x}+\vec{y}$ is the vector created by putting \vec{x} and \vec{y} end-to-end.

Rotations
Let θ be an angle (in radians) and define

$$
R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

to be counterclockwise rotation in the plane. We can check that R_{θ} is actually a linear transformation:

If \vec{x}, \vec{y} are in \mathbb{R}_{1}^{2} then $\vec{x}+\vec{y}$ is the diagonal of the parallelogram formed by \vec{x} and \vec{y}. Thus, if we rotate the parallelogram by θ, the diagonal of the parallelogram formed by $R_{\theta}(\vec{x})$ and $R_{\theta}(\vec{y})$ will be $R_{\theta}(\vec{x}+\vec{y})$, but also $R_{\theta}(\vec{x})+R_{\theta}(\vec{y})$. Thus, $R_{\theta}(\vec{x}+\vec{y})=R_{\theta}(\vec{x})+R_{\theta}(\vec{y})$.

If a is a scalar, then $a \vec{x}$ is a vector a times as long as \vec{x} in the same direction as \vec{x}, so $R_{\theta}(a \vec{x})$ will be a times as long as $R_{\theta}(\vec{x})$, in the same direction as $R_{\theta}(\vec{x})$, so $R(a \vec{x})=a R(\vec{x})$.

Thus, R_{θ} is linear, and we can calculate the corresponding matrix by plugging in the standard basis:

so $R_{\theta}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}\cos \theta \\ \sin \theta\end{array}\right]$ and $R_{\theta}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$.
Thus, R_{θ} is the linear transformation induced by the matrix $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.

Projection
Let $P_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote projection onto the live $y=m x$.

You can check that this is indeed a linear transf. How to find its matrix?

Trick: (1.) Rotate so that $y=m x$ is the x-axis (what is θ ?)
(2.) Project onto x-axis
(3) Rotate back (by θ).

First, what is θ ?

$$
\begin{aligned}
& \cos \theta=\frac{1}{\sqrt{m^{2}+1}} \\
& \sin \theta=\frac{m}{\sqrt{m^{2}+1}}
\end{aligned}
$$

Projecting onto x-axis is just taking the x-coordinate, so the corresponding matrix is $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

Thus, $P_{m}=R_{\theta} \circ P_{0} \circ R_{-\theta}$

So to get the corresponding matrix, we multiply the 3 corresponding matrices:

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]}_{\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0
\end{array}\right]} \underbrace{\left[\begin{array}{ll}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]}_{\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{m^{2}+1} & \frac{m}{m^{2}+1} \\
\frac{m}{m^{2}+1} & \frac{m^{2}}{m^{2}+1}
\end{array}\right]
\end{aligned}
$$

Let $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $y=m x$. similar analysis shows that the corresponding matrix is $\frac{1}{1+m^{2}}\left[\begin{array}{cc}1-m^{2} & 2 m \\ 2 m & m^{2}-1\end{array}\right]$

Practice problems: $2.6: 2,3,7,9$, 12 abc

